2022 Water Quality Report for Village of Ashley This report covers the drinking water quality for Village of Ashley Drinking Water for the 2022 calendar year. This information is a snapshot of the quality of the water that we provided to you in 2022. Included are details about where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and state standards. Your water comes from 2 groundwater wells, each over 325' deep drawing from the Maple River Watershed. The State performed an assessment of our source water to determine the susceptibility or the relative potential of contamination. The susceptibility rating is on a seventiered scale from "very-low" to "very-high" based on geologic sensitivity, well construction, water chemistry and contamination sources. The susceptibility of our source is moderate for well #1 and moderately low for well #2. There are no Significant sources of contamination include in our water supply. We are making efforts to protect our sources by establishing a well head protection program in the near future. If you would like to know more about the report, please contact Robert Studt at 989-620-0781 or the Village Office at 989-847-3050, or at www.ashleyvillage.org. - Contaminants and their presence in water: Drinking Water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791). - water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). - Sources of drinking water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. Our water comes from wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. - Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses. - ☐ Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which provide the same protection for public health. ## Water Quality Data The table below lists all the drinking water contaminants that we detected during the 2022 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 – December 31, 2022. The State allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. All of the data is representative of the water quality, but some are more than one year old. ## Terms and abbreviations used below: - <u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. - <u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. - <u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: means the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. - Treatment technique (TT): A required process intended to reduce the level of contaminant in drinking water - N/A: Not applicable - ND: not detectable at testing limit - ppt: parts per trillion or nanograms per liter - ppb: parts per billion or micrograms per liter - ppm: parts per million or milligrams per liter - pCi/l: picocuries per liter (a measure of radioactivity). - <u>Action Level (AL)</u>: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. - <u>Level 1 Assessment</u>: A study of the water supply to identify potential problems and determine (if possible) why total coliform bacteria have been hound in our water system. - <u>Level 2 Assessment</u>: A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Water Supplier: Fill out the table with only detected contaminants. Delete rows that don't apply. Add rows if needed. See more instructions next page. | Regulated
Contaminant | MCL | MCLG | Level
Detected | Range | Year Sampled | Violation
Yes / No | Typical Source of Contaminant | |---|------|-------------|-------------------|------------------|--------------|-----------------------|--| | | | | | | | | | | Barium
(ppm) | 2 | <2
ppm | 0.02mg/L | >2mg/L | 2019 | NO | Discharge of drilling wastes; Discharge of metal refineries; Erosion of natural deposits | | Nitrate
N(NO3-N) | 10 | <10
mg/L | 0.079
mg/L | 0.020-
0.0096 | 2022 | NO | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Nitrite
N(NO2-N) | 1 | <1mg/
L | <0.020
mg/L | 0.020-
0.011 | 2022 | NO | A salt or ester anion of nitrous acid,
which can be naturally occurring in
ground water. | | Fluoride
(mg/L) | 4 | <4
mg/L | 0.36mg/L | 0.10-0.014 | 2022 | NO | Erosion of natural deposits. Discharge from fertilizer and aluminum factories. | | Sodium ¹ | N/A | N/A | 270Mg/L | N/A | 2022 | NO | Erosion of natural deposits | | Chlorine ²
(ppm) | MRDL | MRDL
G | .25ppm | .25- | 2022 | NO | Water additive used to control microbes | | | 4 | <4
ppm | RAA | .37ppm | | | | | TTHM - Total
Trihalomethane
(ppb) | 80 | <80
ppb | 37 | >0.80mg/L | 2022 | NO | Byproduct of drinking water disinfection | | HAA5
Haloacetic | 60 | <60
ppb | 8.4 | >0.060
Mg/L | 2022 | NO | Byproduct of drinking water disinfection | | Acids | | | | | T | | | | |---|---|-------------------------|-------------------|---------------------|-----------------|-------------------------------------|--|--| | (ppb) | - | | . | | | | | | | Regulated
Contaminant | MCL | MCLG | Level
Detected | Range | Year Sampled | Violation
Yes / No | Typical Source of Contaminant | | | Alpha emitters
(pCi/L) | 15 | 0 | 6.9_+3.0
pCi/L | N/A | 2017 | NO | Erosion of natural deposits | | | Combined
Radium (pCi/L) | 5 | <5 | N/D | +/-
0.2 / 0.3 | 2020 | NO | Erosion of natural deposits | | | Total Coliform
(total number or
% of positive
samples/month) | тт | 0 | 0 | N/A | 2022 | NO | Naturally present in the environment | | | E.coli in the distribution system (positive samples) | See
E.coli
note ³ | 0 | 0 | N/A | 2022 | NO | Human and animal fecal waste | | | Fecal Indicator – E.coli at the source (positive samples) | ТТ | 0 | 0 | N/A | 2022 | NO | Human and animal fecal waste | | | Per- and po | Per- and polyfluoroalkyl substance (PFAS) | | | | | | | | | Regulated
Contaminant | MCL,
TT, or
MRDL | MCLG
or
MRDL
G | Level
Detected | Range | Year
Sampled | Violation
Yes/No | Typical Source of Contaminant | | | Hexafluoropropylene oxide dimer acid (HFPO-DA) (ppt) | 370 | <2ng/L | <2ng/L | N/A | 2022 | NO | Discharge and waste from industrial facilities utilizing the Gen X chemical process | | | Perfluoro
butane sulfonic
acid
(PFBS)(ppt) | 420 | <2ng/L | <2ng/L | N/A | 2022 | NO | Discharge and waste from industrial facilities; Stain-resistance treatments | | | Perfluoro
hexane sulfonic
acid
(PFHxS)(ppt) | 51 | <2ng/L | <2ng/L | N/A | 2022 | NO | Firefighting foam; Discharge and waste from industrial facilities | | | Perfluoro
hexanoic acid
(PFHxA)(ppt) | 400,000 | <2ng/L | <2ng/L | N/A | 2022 | NO | Firefighting foam; Discharge and waste from industrial facilities | | | Perfluoro
nonanoic acid
(PFNA)(ppt) | 6 | <2ng/L | <2ng/L | N/A | 2022 | NO | Discharge and waste from industrial facilities; Breakdown of precursor compounds | | | Perfluoro
octane sulfonic
acid
(PFOS)(ppt) | 16 | <2ng/L | <2ng/L | N/A | 2022 | NO | Firefighting foam; Discharge from electroplating facilities; Discharge and waste from industrial facilities | | | Perfluoro
octanoic acid
(PFOA)(ppt) | 8 | <2ng/L | <2ng/L | N/A | 2022 | NO | Discharge and waste from industrial facilities; Stain-resistant treatments | | | Inorganic
Contaminant
Subject to AL | Action
Level | MCLG | Your
Water | Range of
Results | Year Sampled | Number
of
Samples
Above AL | Typical Source of Contaminant | | | Lead (ppb) ** | 15 | 0 | 1 ppb | 0 ppb-
3 ppb | 2021 | 0 | Lead service lines, corrosion of household plumbing including fittings and fixtures; Erosion of natural deposits | | | Copper (ppm) | 1.3 | 1.3 | 0.4 ppm | 0.0ppm-
0.8ppm | 2021 | 0 | Corrosion of household plumbing systems; Erosion of natural deposits | | | Special Monitoring and
Unregulated Contaminant *** | Level Detected | Year Sampled | Comments | |---|--------------------|--------------|---| | Quarterly Manganese | 0.0021-0.0095 mg/L | 2022 | Results of monitoring are available upon request. | - 1 Sodium is not a regulated contaminant. - 2 Chlorine was calculated using the running annual average. - 3 E. coli MCL violation occurs if: (1) routine and repeat samples are total coliform-positive and either is E. coli-positive, or (2)the supply fails to take all required repeat samples following E.coli positive routine sample, or (3) the supply fails to analyze total coliform-positive repeat sample for E.coli. Monitoring and Reporting to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) Requirements; The State of Michigan and the USEPA require us to test our water on a regular basis to ensure its safety. We met all the monitoring and reporting requirements for the year of 2022 with the exception of ONE violation. The Village failed to sample and report its annual PFAS sample from its treatment plant (Facility ID:TP003) in its monitoring period of January 1, 2022 to September 30, 2022. This violation put the Village out of compliance on October 1, 2022. We returned to compliance by completing the PFAS samples and reporting them to EGLE by December 31, 2022. This violation did not pose a threat to the quality of the drinking water. We will update this report annually and will keep you informed of any problems that may occur throughout the year, as they happen. Copies are available at the Village Office, website www.ashleyvillage.org We invite public participation in decisions that affect drinking water quality. The Village Council meets the first Thursday of each month at the Community Center unless otherwise posted at the Village Office. For more information about your water, or the contents of this report, contact [the Village Clerk, or Robert Studt. For more information about safe drinking water, visit the U.S. Environmental Protection Agency at www.epa.gov/safewater/. - ** 90 percent of the samples collected were at or below the level reported for our water. - *** Unregulated contaminants are those for which EPA has not established drinking water standards. Monitoring helps EPA to determine where certain contaminants occur and whether it needs to regulate those contaminants. Information about lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Village Of Ashley is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Our water supply has 0 known lead service lines and 22 service lines of unknown material out of a total of 222 service lines. We will update this report annually and will keep you informed of any problems that may occur throughout the years as they happen. Copies are available at 114 S. Sterling St. Ashley, Mi. 48806. Or www.ashleyvillage.org We invite public participation in decisions that affect drinking water quality. The Village council meets the second Thursday of each month at the community center unless otherwise posted at the Village office. For more information about your water or the contents of this report, contact the village clerk at 989-847-3050 or Robert Studt at 989-620-0781. For more information about safe drinking water, visit the USEPA at http://www.epa.gov/safewater